# UConn Physics Research in Hall A at Jlab (Puckett group)

Andrew Puckett

UConn physics (virtual) graduate open house

March 12, 2021



# **Puckett Group Introduction**



- Group homepage: <u>https://puckett.physics.uconn.edu</u>
- Andrew Puckett: Associate Professor, PI
  - DOE funding, DE-SC0021200
- Dr. Eric Fuchey: Postdoctoral Research Associate (August 2016present)
  - Ph.D. Université Blaise Pascal in Clermont-Ferrand (2010).
- Ph.D students: Provakar Datta (2018-present), Sebastian Seeds (2018-present)





### Jefferson Lab Overview



Site Aerial, June 2012

UCDNN 3/12/21



Seven-cell, High-Gradient Niobium SRF cavity for 12 GeV Upgrade

# The Super BigBite Spectrometer in Hall A

Proton form factors ratio, GEp(5) (E12-07-109)



Neutron form factors, E12–09–016 and E12–09–019



3/12/21

SIDIS transverse single-spin asymmetry experiment: E12-09-018



Electron Arm

- What is SBS?  $\rightarrow$  A collection of magnets and detectors designed to operate at forward scattering angles with large acceptance at high luminosity
- Five fully approved "large" experiments plus two fully approved "small" experiments, focused on high-Q<sup>2</sup> nucleon form factors, transverse SSAs in SIDIS
- Conditionally approved future program of "tagged DIS"
- Large solid-angle + high luminosity @ forward angles = most interesting physics!

# SBS FF Program Summary



• Expected data from JLab 12 GeV for  $G_E^p$ ,  $G_E^n$ ,  $G_M^n$  to  $Q^2 \ge 10$  GeV<sup>2</sup> allows full flavor decomposition of FFs, severe constraints to most sophisticated theoretical descriptions of the nucleon (and to GPD modeling)

• First "run group": GMN+GEN-RP+nTPE+WAPP starting summer 2021

# **UCONN** 3/12/21

# E12-09-019: Neutron magnetic form factor $G_M^n$ to $Q^2 = 13.5 \text{ GeV}^2$



- E12-09-019 will measure neutron magnetic form factor  $G_M^n$  to 13.5 GeV<sup>2</sup> using the "ratio" method on deuterium. **FIRST SBS experiment!**
- E12-20-010, a recently approved "add-on" measurement, will determine the Rosenbluth slope in elastic *en* scattering for the first time at  $Q^2 = 4.5 \ GeV^2$
- Uses hadron calorimeter for efficient nucleon detection; magnetic deflection for charge ID
- BigBite detects electron, defines  $\vec{q}$  vector, vertex for selection of quasi-elastic

3/12/21

licur



# Virtual Grad Open House Intro, 2021

b<sup>4.6</sup>

0.8

### E12-17-004: $G_E^n/G_M^n$ to 4.5 GeV<sup>2</sup> via charge-exchange recoil polarimetry



• E12-17-004 layout (above) and projected results (right):

3/12/21

- First use of charge-exchange polarimetry in a FF experiment
- E12-20-008 approved as add-on to measure  $K_{LL}$  for  $\gamma n \rightarrow \pi^- p$



Analyzing powers for np, pp, pA scattering vs. initial momentum (left) and vs. transferred momentum (right)



# E12-09-016: $G_E^n/G_M^n$ to 10 GeV<sup>2</sup> using polarized <sup>3</sup>He(e,e'n)pp







- E12-09-016 will measure the neutron electric form factor to 10 GeV<sup>2</sup> using the beam-target double-spin asymmetry method on polarized <sup>3</sup>He
  Same detector configuration as GMN (E12-09-019)
- High-luminosity polarized <sup>3</sup>He target with convection-driven circulation of polarized gas.
- Measurement to 10 GeV<sup>2</sup> has enormous discrimination power among theoretical models—will severely test DSE calculations, virtually alone in predicting a turnover and zero crossing of  $G_E^n$

#### 3/12/21

# E12-07-109: $G_E^p/G_M^p$ to 12 GeV<sup>2</sup> via polarization transfer



Jeopardy proposal reapproved by PAC47 in 2019

3/12/21

Currently projected to run in ~2023

٠

•

٠

- Novel high-temperature lead-glass calorimeter detects scattered • electron with scintillator-based coordinate detector-triggering, aid tracking in front GEMs, and rejection of inelastics
- GEM-based trackers with CH<sub>2</sub> analyzers for proton polarimetry •
- HCAL for trigger and preferential section of nuclear scattering ٠ events with high analyzing power



 $Q^2$  (GeV<sup>2</sup>)

5

#### Virtual Grad Open House Intro, 2021

15

# SBS SIDIS program: E12-09-018 (Transversity)



- **E12-09-018** in Hall A: 40 (20) days production at E = 11 (8.8) ٠ GeV—significant  $Q^2$  range at fixed x
- Reach high x (up to  $\sim 0.7$ ) and high statistical FOM ( $\sim 1,000$ X Hall A ٠ E06-010 @6 GeV)

$$\begin{array}{rcl}
\vec{k} & \vec{S}_{T} & A_{UT}(\phi, \phi_{S}) &= & \frac{1}{P_{T}} \frac{d\sigma(\phi, \phi_{S}) - P_{T}}{d\sigma(\phi, \phi_{S}) + P_{T}} \\
& = & A_{UT}^{Collins} \sin(\phi + P_{T}) \\
& = & A_{UT}^{Collins} \sin(\phi - \Phi_{T}) \\
& = & A_{UT}^{Collins} \sin(\phi - \Phi_{T})$$

$$= \frac{1}{P_T} \frac{d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi)}{d\sigma(\phi, \phi_S) + d\sigma(\phi, \phi_S + \pi)}$$
$$= A_{UT}^{Collins} \sin(\phi + \phi_S) + A_{UT}^{Sivers} \sin(\phi - \phi_S) + A_{UT}^{Pretz} \sin(3\phi - \phi_S)$$



Example of projected E12-09-018 precision: neutron Sivers moments for charged pions and Kaons (11 GeV data only)

# SBS PICS! (some outdated)



#### INFN – Front Tracker GEM

GEM J1 - stored

Activities are going on despite exceptional restrictions thanks to: • Ezekiel Wertz working on-site since end of September; Chuck, Alexandre, Brian, Holly ... help locally; Roberto and Evaristo support from remote; Ben + Paolo improving MPD-DAQ; Andrew helps on tracking analysis

> Taken cosmic data with CODA3
> Fixed different cabling and other electronics/DAQ tedious issues
> Chambers for BigBite under preparation including machinery on carbon frames
> ... and more

#### UVa GEMs: Cosmic Setup in EEL124



8/6/2019

SBS Coll. Meeting @ JLal

#### Work since Feb SBS meeting

- 126 of out 191 supermodules have been assembled
- JLab Detector Support Group is contributing manpower to assembling supermodules.



#### Virtual Grad Open House Intro, 2021

# **UCONN** 3/12/21

# Puckett group role in SBS Collaboration



- Prof. Puckett is SBS Coordinating Committee chair and GEP experiment representative—spokesperson of 3 of the 7 fully approved SBS experiments
- We are leading the Monte Carlo simulations, event reconstruction and data analysis software development for SBS program
- We are in charge of preparing RICH detector for charged particle ID in SIDIS experiment

3/12/21

UCU

## Ph.D. research opportunities in Puckett Group

- We are seeking at least one more Ph.D. thesis student from Fall 2021 incoming class to work on the SBS program
- Student joining the group in Fall 2021 would most likely conduct thesis research on the SIDIS (E12-09-018) or GEP (E12-07-109) experiment.
- Full research support after completing course and exam requirements  $\rightarrow$  expectation to relocate to JLab (at least during thesis experiment run)
- SBS program starting 2021—occupying Hall A for the next 3-5 years.
- High-impact, highly anticipated experiments that will generate high-profile publications and many Ph.D. dissertations!
- Nucleon structure and strong interaction physics is the main motivation driving the construction of the US-based Electron-Ion Collider—this field of research has a bright long-term future
- Our activity is part of broad UConn-led efforts at JLab, see also:
  - Prof. Kyungseon Joo—nucleon structure studies in Hall B with CLAS12
  - Prof. Richard Jones-GlueX program in Hall D

# **UCONN** 3/12/21

# Backups



# Overview of SBS Program—Actual and Potential

#### Fully Approved:

- E12-07-109 (GEP): 45 PAC days, A- rate, "High Impact"
- E12-09-019 (GMN): 25 PAC days, B+ rate
- E12-09-016 (GEN): 50 PAC days, A- rate
- E12-09-018 (SIDIS): 64 PAC days, A- rate
- E12-17-004 (GEN-RP): 5 PAC days, A- rate
- E12-20-010 (nTPE): 2 PAC days, A- rate
- E12-20-008 (WAPP): 2 PAC days, B+ rate

Conditionally Approved:

- C12-15-006 (TDIS): 27 PAC days, A- rate; "C1" approval status
  - "Run-group" add-on of kaon structure measurement also C1 approved

3/12/21

licur

Potential future physics using SBS:

- $A_1^n$ : formerly an approved BigBite experiment (2006), withdrawn at jeopardy (2019) due to imminent Hall C run, new proposal with BB+SBS likely (pending Hall C results)
- J/ $\psi$  photoproduction polarization observables/LHCb pentaquark physics: LOI submitted 2017
- *e*+*p* elastic scattering polarization transfer—part of science program for positron beam at CEBAF in LOI and now white paper available in arxiv: <u>https://arxiv.org/abs/2007.15081</u>
- More DIS/SIDIS/TMD physics:
  - Longitudinally polarized SIDIS on <sup>3</sup>He and spin-flavor decomposition (deferred PR12-14-008)
  - Transversely polarized DIS/SIDIS on proton:  $g_2^p$ , Collins, Sivers, etc.
- Polarization observables and xsec in exclusive  $\phi$  production
- Strange FFs at high Q<sup>2</sup> (not really an "SBS" proposal *per se*, but reusing some SBS components)
- Higher-Q<sup>2</sup> EMFFs/higher-x physics w/future CEBAF energy upgrade?